首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   20篇
  国内免费   28篇
大气科学   182篇
地球物理   1篇
地质学   18篇
海洋学   1篇
自然地理   9篇
  2023年   7篇
  2022年   35篇
  2021年   34篇
  2020年   40篇
  2019年   28篇
  2018年   7篇
  2017年   12篇
  2016年   6篇
  2015年   5篇
  2014年   27篇
  2013年   7篇
  2011年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
1.
基于同一区划方法、指标体系,使用1961—2014年辽宁省52站气象观测资料,分析辽宁省气温、气候区划指标、范围及界线的变动特征。结果表明:辽宁省年均气温在1988年发生一次突变,突变后气温开始显著上升;≥10 ℃积温日数比较显著地响应气温突变,而干燥指数、7月平均气温变化不显著。在空间分布上区划指标值均存在不同程度的变化。① 全省≥10 ℃积温日数均出现增加,但在中西部地区显著增加;② 在盘锦-抚顺一线以北(南),气候总体呈不显著变湿(干)趋势;③ 7月平均气温呈缓慢上升趋势。区划范围及界线位置出现更加显著地变化:① 暖温带范围主要向北向东扩展,中温带向东收缩;② 半湿润区范围主要向北向西扩展,半干旱区向西北方向收缩,湿润区范围基本不变;③ Tb范围显著向北向东扩展,Ta范围向北向东收缩。在此基础上分析了气候格局变化的可能气候成因,发现突变后≥10 ℃积温日数期间500 hPa高度场增加与4月和10月东亚冬季风减弱,4—10月东北冷涡持续天数增加和7月500 hPa高度场增加,可能分别是温度带,Tb区、Ta区和半湿润区、半干旱区变化的原因。  相似文献   
2.
东北地区冬半年积雪与气温对冻土的影响   总被引:3,自引:3,他引:0  
周晓宇  赵春雨  李娜  刘鸣彦  崔妍  敖雪 《冰川冻土》2021,43(4):1027-1039
利用东北地区121个气象站逐日冻土深度、积雪深度、平均气温、地表平均气温及降水量数据,分析了1964—2017年冬半年冻土的变化特征及气象要素对冻土的影响。结果表明:东北地区积雪深度、平均气温、地表平均气温与冻土深度相关系数较高,降水量相关性不大。20世纪60年代平均气温、地表平均气温及负积温最低,最大冻土深度为历年代最深;随着气候变暖,最大冻土深度以6.15 cm?(10a)-1的速率显著减小。冬半年平均最大冻土深度为123 cm,呈显著纬向分布,自辽东半岛向大兴安岭北部递增;随纬度和海拔高度的增加,平均气温和地表平均气温降低,负积温增加,且由北向南地气温差增大。最大冻土深度全区有90%以上的站点减少,减少速率以0.1~10 cm?(10a)-1为主。冻土持续时间随纬度升高而增加,月最大冻土深度和积雪深度最大值分别出现在3月和1月,最大冻土深度的增加要滞后于积雪深度的增加。由于积雪对地温的保温作用,积雪深度较浅时,冻土深度增加较明显,随着积雪深度的增加,冻土深度变化较小,积雪对冻土起到了保温的作用。对于高纬度地区站点,30 cm左右为积雪的保温界限值;对于沿海站点,积雪保温的界限值在5 cm左右;在相同地形下,冻土深度较浅区域积雪的保温值因海拔高度、气候特点而异。最大冻土深度对地表平均气温升温的响应更为显著,地表平均气温和平均气温每升高1 ℃,最大冻土深度将减小8.4 cm和10.6 cm,负积温每减少100 ℃?d,最大冻土深度减少4.9 cm。  相似文献   
3.
CCSM4模式对东北气温和降水的模拟及预估   总被引:1,自引:0,他引:1  
利用东北地区162个气象观测站逐月气温和降水资料对CCSM4模式的模拟性能进行了评价,并预估了2021—2050年东北地区的气候变化情景。结果表明:CCSM4模式长期历史气候模拟实验模拟的1961—2005年月平均气温、降水量值能较好地再现东北区域年平均气温、降水量的空间分布形态,但气温模拟值比观测偏低,91. 4%站点误差在1. 5℃以内;降水中心比观测略偏北,全区平均偏多35. 18 mm。2021—2050年东北区域年平均气温呈增温趋势,高纬度地区的增温幅度明显大于低纬度地区,与基准年相比,RCP2. 6、RCP4. 5和RCP8. 5情景下全区分别偏高6. 00℃、5. 86℃和6. 42℃。年降水量分布呈东南向西北递减的形态,降水大值中心出现在东南部吉林与辽宁交界处,RCP2. 6、RCP4. 5和RCP8. 5情景下全区分别偏多15. 2%、3. 1%和2. 0%。  相似文献   
4.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   
5.
基于辽宁省1114个国家级和区域级地面台站1961年以来的逐日气温和降水观测资料,利用距离平方反比法差值生成了1717个乡镇的气象资料序列,采用气象干旱综合监测指数统计分析了辽宁省2017年4—8月精细化到乡镇的气象干旱特征。结果表明:2017年辽宁省春夏季异常高温,同时降水异常偏少,致使气象干旱不断发展;干旱在4月5日前从中部和北部开始,4月末扩展到西部,5—6月再向东南发展,波及88%的乡镇,7月以来气象干旱程度开始减轻;气象干旱持续时间长的乡镇主要集中在中部和北部,最长持续时间153d;受气温偏高和降水过程的影响,中度以上气象干旱面积呈阶段性变化,且极端干旱的发展伴随高温时段。由于气象干旱不同于农业干旱,在开展为农服务时要因地制宜采取应对措施。  相似文献   
6.
选取中国东北区域162个气象站1961—2015年地面气温资料,采用多种统计方法分析了近55 a东北地区气温的一致性和局地性演变特征。结果表明:东北地区年平均气温存在较为良好的空间一致性,"全区一致型"气候类型为东北地区最主要气候形态;第一旋转载荷向量时间系数呈上升趋势亦存在较明显2—7 a的周期,说明北部地区气温受全球变暖、ENSO等大尺度气候背景影响显著; 1961—2015年北部区域以0. 34℃/10 a的升温率高于南部区域的0. 26℃/10 a,但1980年后增温趋势减慢;年平均气温的概率曲线随年代整体向高值区移动,北部区域冬季增暖较为显著,南部区域冬夏均较为明显,春秋季节可能有缩短趋势。  相似文献   
7.
东北地区水稻障碍型低温冷害变化对区域气候增暖的响应   总被引:2,自引:0,他引:2  
胡春丽  李辑  焦敏  王婉昭  李晶  李菲 《气象科技》2015,43(4):744-749
利用东北地区153个气象站1961—2010年逐日气温资料,采用统计学方法分析了水稻障碍型低温冷害的气候变化特征及其对区域气候变暖的响应情况。结果表明,东北大部地区水稻障碍型低温冷害事件呈减少趋势,但区域性较为明显;障碍型低温冷害对关键发育期气温变化响应较为敏感,二者呈显著的负相关关系,表现为气温每升高1 ℃,东北地区冷害减少35个站次。东北地区关键发育期气温均呈上升趋势,但吉林西部地区障碍型冷害却随之增加,分析了关键发育期气温变率和气候变率,将其解释为局地障碍型冷害增加主要受气候变率增大的影响,逐日气温变率对其影响不大。  相似文献   
8.
利用2007—2008年辽宁锦州玉米农田生态系统野外观测站资料,基于CoLM模型对玉米根分布在陆-气水热通量模拟中的影响进行研究,结果表明:模型模拟性能随年际气象条件的差异而不同,与2007年相比,2008年生长季内降水偏多,感热和潜热模拟精度明显提高;决定根分布形态的50%和95%根总量土层深度(d50和d95)两个参数中,d50比d95敏感;根分布对土壤湿度的影响在极端干旱条件下很小,在一定土壤湿度范围内随土壤湿度及土层深度的增大而减小;在水汽通量各分量中,植物蒸腾受根分布影响最大,其次是土壤蒸发,而叶片蒸发不受影响;根分布对潜热和感热模拟的影响随土壤湿度增大而减小。  相似文献   
9.
利用2015—2019年辽宁省发布的暴雨红色预警信号和1605个自动站的分钟级降水资料,统计暴雨红色预警信号和短时大暴雨年际变化和时空分布,分析暴雨红色预警信号的高分布区、易发时段。结果表明:2015—2017年辽宁省暴雨红色预警信号发布站数逐年递增,最大值出现在2017年,发布站数为147个;2015—2018年预警信号准确率提升,提前时间略减少,最低值为2018年,提前时间为19 min;2019年比2018年暴雨红色预警信号发布站数减少59个,提前时间增加29 min;暴雨红色预警信号的空间分布为东南部地区多、中部地区少;暴雨红色预警信号多在夜间发布;在辽宁省发布的50%以上的暴雨红色预警信号中,降水量达到预警发布标准的时间滞后于最大雨强出现时间90 min,最大雨强出现时间为暴雨红色预警信号发布的重要指标。为了达到防灾减灾的服务效果,发布暴雨红色预警信号时,应充分考虑最大雨强出现时间、发布时机、短时大暴雨高发区及地形的影响。  相似文献   
10.
基于2018年12月至2020年3月喀左、沈阳、辽阳、满洲里4个国家级地面气象站人工冻土器与测温式冻土自动观测仪观测的资料,对人工冻土观测获得的冻点与测温式冻土自动观测仪获得的相应深度的温度进行对比分析。结果表明:人工冻土器获取的冻点对应的土壤温度与0℃总体一致,又不完全重合;0—35 cm深度范围,冻点对应的温度变化范围为-2~6℃,呈现跳跃性变化。35 cm以下深度范围,冻土冻点对应的温度变化范围为-0.5~1.0℃;融化过程冻点对应的平均温度高于冻结过程冻点对应的平均温度。从完全融化时间上来看,人工冻土器观测到的完全融化时间晚于测温式冻土仪0℃线完全消失的时间。人工冻土观测的实质是获得土壤温度0℃点所在位置。灌注不同台站水的冻土器内管在相同的温度环境下,冻结与融化状态无明显区别;人工冻土器内管冻结过程是温度和持续时间双重作用的结果,深层土壤温度变化缓慢,使得内管中的水冻结和融化需要的时间长。另外,作为接触式测温设备,减小外因产生的时滞是提高其灵敏度的重要环节,建议测温式冻土仪的外管壁使用温度滞后效应更小的金属外管。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号